Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2149-2177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482519

RESUMEN

Background: Rheumatoid arthritis (RA) is a common acute inflammatory autoimmune connective tissue arthropathy. The genetic studies, tissue analyses, experimental animal models, and clinical investigations have confirmed that stromal tissue damage and pathology driven by RA mounts the chronic inflammation and dysregulated immune events. Methods: We developed methotrexate (MTX)-loaded lipid-polymer hybrid nanoparticles (MTX-LPHNPs) and aceclofenac (ACE)-loaded nanostructured lipid carriers (ACE-NLCs) for the efficient co-delivery of MTX and ACE via intravenous and transdermal routes, respectively. Bio-assays were performed using ex-vivo skin permeation and transport, macrophage model of inflammation (MMI) (LPS-stimulated THP-1 macrophages), Wistar rats with experimental RA (induction of arthritis with Complete Freund's adjuvant; CFA and BCG), and programmed death of RA affected cells. In addition, gene transcription profiling and serum estimation of inflammatory, signaling, and cell death markers were performed on the blood samples collected from patients with RA. Results: Higher permeation of ACE-NLCs/CE across skin layers confirming the greater "therapeutic index" of ACE. The systemic delivery of MTX-loaded LPHNPs via the parenteral (intravenous) route is shown to modulate the RA-induced inflammation and other immune events. The regulated immunological and signaling pathway(s) influence the immunological axis to program the death of inflamed cells in the MMI and the animals with the experimental RA. Our data suggested the CD40-mediated and Akt1 controlled cell death along with the inhibited autophagy in vitro. Moreover, the ex vivo gene transcription profiling in drug-treated PBMCs and serum analysis of immune/signalling markers confirmed the therapeutic role co-delivery of drug nanoparticles to treat RA. The animals with experimental RA receiving drug treatment were shown to regain the structure of paw bones and joints similar to the control and were comparable with the market formulations. Conclusion: Our findings confirmed the use of co-delivery of drug nanoformulations as the "combination drug regimen" to treat RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diclofenaco/análogos & derivados , Nanopartículas , Humanos , Ratas , Animales , Metotrexato , Ratas Wistar , Artritis Reumatoide/patología , Nanopartículas/química , Inflamación/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Lípidos/química
2.
Eur J Pharmacol ; 940: 175479, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36566006

RESUMEN

Non-small cell lung cancer (NSCLC) is the frequent subtype of lung cancer and the currently used treatment methods, diagnosis, and chemoresistance are relatively ineffective. Determining the pharmacological targets from active biomolecules of medicinal plants has become a frontiers era for biomedical research to develop novel therapies. In view of these scenarios, this pilot study, network pharmacology, cheminformatics, integrative omics, molecular docking and in vitro anti-cancer analysis were performed to unveil the multi-targeted treatment mechanisms of novel plant bioactives to treat lung cancer. Bioactive molecules from medicinal plants were compiled from PubChem. Network pharmacology approach revealed that 29 compounds efficiently target the 390 human and lung cancer associated genes. In addition, comparative analysis was performed and identified the 7 bioactive molecules significantly targeting 8 lung cancer genes. The integrative omics analysis discovered unique genes between the lung cancer and normal lung tissues. These genes were further validated through protein-protein interaction, gene ontology, gene functional and pathway enrichment, boxplot and overall survival analyses to understand the function of unique genes and their involvement in cancer signaling pathways. Survival heatmap analyses identified the significant prognostic genes. Docking results revealed that, lupeol and p-coumaric acid displayed high binding affinities with MIF, CCNB1, FABP4. Hence, we selected these two bioactives for in vitro analysis. Furthermore, these selected bioactives were showed concentration dependent cytotoxicity against the lung adenocarcinoma cells (A549). This holistic study has opened up novel avenues and unravels the cancer prognostic genes which could serve as druggable target and bioactives with anti-cancerous efficacy. Further functional validations are prerequisites to deciphering these bioactives as commercial drug candidates.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Pronóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Simulación del Acoplamiento Molecular , Farmacología en Red , Proyectos Piloto
3.
Plant Physiol Biochem ; 49(7): 721-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21531144

RESUMEN

A high molecular mass novel metalloprotease, cotinifolin is purified from the latex of Euphorbia cotinifolia by a combination of anion exchange and hydrophobic interaction chromatography. The nonglycosylated enzyme has a molecular mass of 79.76 kDa (ESI-MS) and the isoelectric point of the enzyme is pH 7.7. Cotinifolin hydrolyzes denatured natural substrates such as casein, azoalbumin, and hemoglobin with high specific activity. The K(m) value of the enzyme was found to be 20 µM with azocasein. The enzyme is not prone to autolysis even at very low concentrations. Polyclonal antibodies specific to enzyme was raised and immunodiffusion reveals that the enzyme has unique antigenic determinants. Maximum caseinolytic activity of cotinifolin is observed in the range of pH 7.0-8.0 and temperature of 50 °C. Using 0.2 mL of 1 mM solution of each metal ion, the purified protease was inhibited slightly by Ba²âº and Mn²âº, moderately by Mg²âº, Ca²âº and Cs²âº and significantly by Zn²âº, Cu²âº and Co²âº. On the other hand, substantial activation in caseinolytic activity was achieved by Ni²âº. The enzyme activity was also inhibited by EDTA and o-phenanthroline but not by any other protease inhibitors. Perturbation studies by temperature, pH, and chaotrophs of the enzyme also reveal its high stability as seen by CD, fluorescence and proteolytic activity. Spectroscopic studies reveal that cotinifolin has secondary structural features with α/ß type with approximately 9% of α-helicity. Easy availability and simple purification procedure makes the enzyme a good system for biophysical study, biotechnological and industrial applications.


Asunto(s)
Euphorbia/enzimología , Metaloproteasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinales/enzimología , Cationes Bivalentes/farmacología , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Dicroismo Circular , Detergentes/farmacología , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Punto Isoeléctrico , Metaloproteasas/química , Metaloproteasas/aislamiento & purificación , Peso Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Estabilidad Proteica , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA